
© 2013 EDB All rights reserved. 1

Challenges of Concurrent DDL
Why is this such a hard problem, and is there
anything we can do about it?

• Robert Haas | PGCon 2019

© 2019 EDB All rights reserved. 2

• Problem Statement

• Acceptance Criteria

• Well-Defined Semantics

• The Relation Cache + Invalidation Messages

• Plan Invalidation

• Multi-Step Changes

• Lock Upgrade Hazards

Overview

© 2019 EDB All rights reserved. 3

Allow users to

change the definition of an object (DDL)

while

the object is being used. (Concurrent)

Problem Statement

© 2019 EDB All rights reserved. 4

• Comprehensible. We must be able to explain the
behavior to users. This implies that it must be
predictable and not too strange.

• Reliable. The system must not crash, hang, spit out
scary internal error messages, corrupt data, etc.

Acceptance Criteria

© 2019 EDB All rights reserved. 5

• What happens if these two things are happening at the
same time?

– ALTER TABLE foo DETACH PARTITION foo1;
– COPY foo FROM ...

• If any rows are routed to foo1 after the DETACH
operation, we could:

– Store them into foo1 anyway.
– Throw them away.
– Emit an error.
– Something else?

Well-Defined Semantics

© 2019 EDB All rights reserved. 6

• What happens if these two things are happening at the
same time?

– ALTER TABLE foo ADD CONSTRAINT ...
– COPY foo FROM ...

• If COPY inserts any rows that violate the constraint, we
could:

– Constraint ends up violated.
– Discard the rows.
– Emit an error.
– Something else?

Well-Defined Semantics (2)

© 2019 EDB All rights reserved. 7

• What happens if these two things are happening at the
same time?

– ALTER TABLE ... SET (fillfactor = 90);
– COPY foo FROM …

• The new value will take effect “eventually,” no later than
the start of the next transaction, and maybe earlier.

Well-Defined Semantics (3)

© 2019 EDB All rights reserved. 8

• Each backend stores metadata about each table it has
accessed in the relcache. Might be out-of-date if other
sessions have performed DDL.

• When a backend performs DDL on an object, it sends
invalidation messages to a shared queue. Sometimes
we use the abbreviation sinval (“shared invalidation”).

• Other backends later read these messages and
invalidate their local caches.

• For the system to function as intended, it must be
guaranteed that each backend which might have
cached data notices the invalidation messages “soon
enough.”

The Relation Cache vs. DDL

© 2019 EDB All rights reserved. 9

• When a transaction commits, invalidation messages
are added to the shared queue before releasing locks.

• When a transaction acquires a lock on a relation, it
checks for new invalidation messages after acquiring
the lock.

• The cache will never contain stale information provided
that the relation lock held by the transaction performing
DDL conflicts with the relation lock the other
transaction is attempting to acquire.

• The data used to build the cache entry will never
change while the entry is being read provided that
AccessExclusiveLock is used for all DDL.

Locking Provides Sequencing

© 2019 EDB All rights reserved. 10

• Invalidation messages are processed at the beginning
of each transaction, and whenever we take a new
heavyweight lock, and at some other times.

• Typically, this means that we process invalidations at
the beginning of each statement and not afterwards.

• However, we might not process invalidations until as
late as the start of the next transaction.

• And on the other hand, we might process them in the
middle of running the current statement.

• Whenever we process invalidations, we process all
pending invalidation messages, not just those
pertaining to the relation we locked.

Some Invalidation Gotchas

© 2019 EDB All rights reserved. 11

• The relcache contents might be stale.
– DDL could have committed after we acquired all of our locks.

• The relcache contents might change between one
access and the next.

– Even though we hold a lock, concurrent DDL could still
commit meanwhile.

• The underlying data could even change while we are in
the process of rebuilding the relcache entry.

– All data is now read from the catalogs using MVCC snapshots, but
different bits of data might be read using different snapshots.

• A relcache data structure to which we hold a pointer
might get freed at a surprising time.

– At any point where we might process invalidation messages,
a relcache rebuild could occur and the underlying data might
have changed.

Reducing Lock Levels Breaks Everything

© 2019 EDB All rights reserved. 12

TriggerDesc *tg = rel->trigdesc;
HeapTuple tup = SearchSysCache1(…);
int i;

for (i = 0; i < tg->numtriggers; ++i)
{

/* do something with tg->triggers[i] */
}

ReleaseSysCache(tup);

Stale Pointer Example

© 2019 EDB All rights reserved. 13

inhoids = find_inheritance_children(rel);

foreach (lc, inhoids)
{

tuple = SearchSysCache1(RELOID, inhrelid);
/* … */

}

• find_inheritance_children() uses a current snapshot
and direct catalog access.

• SearchSysCache1 uses cached information that might
be older or newer.

Relation Cache Rebuild: Example Hazard

© 2019 EDB All rights reserved. 14

build_simple_rel(int relid) /* simplified, from v11 */
{

rel->part_rels =
palloc(sizeof(RelOptInfo *) * rel->nparts);

foreach(l, append_rel_list)
{

if (appinfo->parent_relid != relid)
continue;

childrel = build_simple_rel(…);
rel->part_rels[cnt_parts] = childrel;
cnt_parts++;

}
Assert(cnt_parts == nparts);

}

Why Does Concurrent DDL Break This?

© 2019 EDB All rights reserved. 15

build_simple_rel(int relid) /* simplified, from v11 */
{

rel->part_rels =
palloc(sizeof(RelOptInfo *) * rel->nparts);

foreach(l, append_rel_list)
{

if (appinfo->parent_relid != relid)
continue;

childrel = build_simple_rel(…);
rel->part_rels[cnt_parts] = childrel;
cnt_parts++;

}
Assert(cnt_parts == nparts);

}

Don’t Ask The Same Question Twice!

© 2019 EDB All rights reserved. 16

• Shared invalidation messages not only invalidate
relcache entries but also cached plans!

• Reducing the lock level below AccessExclusiveLock
creates a risk that an “old” plan will be executed.

• If the information is non-critical, e.g. whether newly-
inserted values can be TOAST-compressed, a small
race of this kind may be acceptable.

• However, it’s clearly unacceptable for critical data such
as column types.

Plan Invalidation

© 2019 EDB All rights reserved. 17

• Concurrent ATTACH PARTITION: Just ignore the new
partitions.

• Concurrent DETACH PARTITION: What do we do
about partitions that are not partitions any more? And
that maybe have been dropped or further altered?

• Concurrent ADD COLUMN: Just ignore the new
column.

• Concurrent DROP INDEX: What if the plan uses the
dropped index?

Plan Invalidation Examples

© 2019 EDB All rights reserved. 18

• Existing Cases:

– CREATE INDEX CONCURRENTLY

– REINDEX INDEX CONCURRENTLY

– DROP INDEX CONCURRENTLY

• Wish List:

– Enable checksums on a running cluster

– Table-rewriting operations such as CLUSTER

Multi-Step Changes: Examples

© 2019 EDB All rights reserved. 19

• Change some kind of state to let everyone know that
the change is in progress.

• Wait until you’re sure that everyone knows about this
initial change.

• Then do the next step of the process.

• For instance, for DROP INDEX CONCURRENTLY:
1. “Please don’t read from this index.” … wait
2. “Please don’t insert into to this index.” … wait
3. Remove index.

Multi-Step Changes: Strategy

© 2019 EDB All rights reserved. 20

• We have no way of knowing which backends have read
any shared invalidation messages we’ve sent.

• And we have no way of getting them to do so quickly.

• Current approach is to collect a list of transactions that
have the index locked, and then wait until all of those
transactions have ended.

• They might have actually read the invalidation
messages much sooner, but we don’t know!

• Possible solution: Andres Freund’s global barrier stuff.

Multi-Step Changes: Inefficient Waiting

© 2019 EDB All rights reserved. 21

• If a backend crashes while performing one of these
multi-step sequences, there is no mechanism to clean
things up automatically.

• The changes made and committed in earlier stages
remain in effect, but the work doesn’t get completed.

• Typical result: We pay for an index that we don’t get to
use.

• Could potentially be fixed by some kind of background
worker.

• Multi-step changes are a powerful technique, but every
new use of this technique adds a new kind of “garbage”
risk.

Multi-Step Changes: Garbage

© 2019 EDB All rights reserved. 22

• Any DDL statement must acquire the strongest lock it
will need at the beginning of the operation, or risk
deadlock upon upgrade.

• For example, suppose process A acquires
ShareUpdateExclusiveLock and later
AccessExclusiveLock.

• Normally, that’s fine, but if process B acquires
AccessShareLock and then later AccessExclusiveLock,
deadlock will occur.

• It’s pretty sad if the process that is aborted is one that
has done a lot of work.

Locking Considerations

© 2019 EDB All rights reserved. 23

• Any questions?

Thanks

	Presentation Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

